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Abstract
A comparison is made of various searching procedures, based upon different
entanglement measures or entanglement indicators, for highly entangled
multiqubits states. In particular, our present results are compared with those
recently reported by Brown et al (J. Phys. A: Math. Gen. 2005 38 1119). The
statistical distribution of entanglement values for the aforementioned multiqubit
systems is also explored.

PACS numbers: 03.67.−a, 03.67.Mn

1. Introduction

Quantum entanglement [1] is nowadays regarded as constituting one of (if not the) most
basic features of quantum mechanics [2–4]. The increasing interest generated by this subject
within the research community [5–27] has been greatly stimulated by the discovery of novel
quantum information processes [2–4] (such as quantum teleportation and superdense coding)
that may lead to important practical developments. The technological relevance of quantum
entanglement is not limited to the information technologies, but is also at the basis of other
interesting applications, such as quantum metrology [5]. Besides its remarkable technological
impact, current research in quantum entanglement is contributing to a deeper understanding of
various basic aspects of quantum physics, such as, for instance, the foundations of quantum-
statistical mechanics [6, 7]. The relationship between entanglement and the dynamical
evolution of multipartite quantum systems [8–11] constitutes another interesting example.

Due to its great relevance, both from the fundamental and from the practical points of
view, it is imperative to explore and characterize all aspects of the quantum entanglement of
multipartite quantum systems. A considerable amount of research has recently been devoted
to the study of multiqubit entanglement measures defined as the sum of bipartite entanglement
measures over all (or an appropriate family of) the possible bi-partitions of the full system
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[14, 15, 17–26] (see also [27] for another approach, also based on bi-partitions, to multipartite
entanglement). In particular, Brown et al [14] have performed a numerical search of multiqubit
states exhibiting a high value of an entanglement measure defined in the aforementioned way,
based upon the negativity of the system’s bi-partitions. The purpose of the present work is
twofold. On the one hand, we numerically determine the distribution of entanglement values
(according to four different measures of multiqubit entanglement based upon bi-partitions) of
pure states of three, four and five qubits, and its relationship with important particular states,
such as the |GHZ〉 state. On the other hand, we report the result of running numerical searches
of multiqubit states (up to seven qubits) exhibiting high entanglement according to the alluded
to four measures. The results obtained using each of these four measures are compared to
each other, and also compared to those reported by Brown et al [14].

The paper is organized as follows. Some basic properties of the entanglement measures
used here are reviewed in section 2. Our results concerning the distribution of multiqubit
entanglement measures for systems of three, four and five qubits are reported and discussed
in section 3. Our algorithm for the search of states of high entanglement is presented in
section 4, and the main results obtained are discussed and compared with those reported by
Brown et al. Finally, some conclusions are drawn in section 5.

2. Pure state multipartite entanglement measures based on the degree of mixedness
of subsystems

Research on the properties and applications of multipartite entanglement measures has attracted
considerable attention in recent years [14, 15, 17–26]. One of the first practical entanglement
measures for N-qubit pure states |φ〉 to be proposed was that introduced by Meyer and Wallach
[17]. It was later pointed out by Brennen [18] that the measure advanced by Meyer and Wallach
is equivalent to the average of all the single-qubit linear entropies,

Q(|φ〉) = 2

(
1 − 1

N

N∑
k=1

trρ2
k

)
. (1)

where ρk, k = 1, . . . , N , denotes the marginal density matrix describing the kth qubit of the
system after tracing out the rest. This quantity, often referred to as ‘global entanglement’ (GE),
describes the average entanglement of each qubit of the system with the remaining (N −1)-
qubits. The GE measure is widely regarded as a legitimate, useful and practical N-qubit
entanglement measure [18–22]. This measure is invariant under local unitary transformations
and non-increasing on average under local quantum operations and classical communication.
That is to say, Q is an entanglement monotone. Another interesting feature of this measure
is that it can be determined without the need for full quantum state tomography [18].
This measure proved to be useful in the study of several problems related to multipartite
entanglement, such as entanglement generation by nearly random operators [19] and by
operators characterized by special matrix element distributions [20], thermal entanglement in
multiqubit Heisenberg models [21], and multipartite entanglement in one-dimensional time-
dependent Ising models [22]. Other entanglement measures, based upon the average values
of the linear entropies associated with more general partitions of the N-qubit systems into two
subsystems (that is, involving not only the partitions of the system into a 1-qubit subsystem
and an (N−1)-qubit subsystem) have also been recently explored [23–25]. In particular, Scott
[23] studied various interesting aspects of the family of multiqubit entanglement measures
given by
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Table 1. Upper bounds for the entanglement measures EL,EV N , ER and EN .

N 3 4 5 6 7

EL,max 1.5 4.25 10 23 49.875
EV N,max 3 10 25 66 154
ERe,max 2.079 441 54 6.931 471 81 17.328 6795 45.747 7139 106.744 666
ENeg,max 1.5 6.5 17.5 60.5 157.5

Qm(|φ〉) = 2m

2m − 1

(
1 − m!(N − m)!

N !

∑
s

tr ρ2
s

)
, m = 1, . . . , [N/2], (2)

where the sum is taken over all the subsystems s constituted by m qubits, ρs are the concomitant
marginal density matrices, and [x] is the integer part of x. The quantities Qm correspond to the
average entanglement between subsystems consisting of m qubits and the remaining N − m

qubits. The measures Qm have been applied to the study of quantum error correcting codes
and to the analysis of the (multipartite) entangling power of quantum evolutions [23].

Another way of characterizing the global amount of entanglement exhibited by an N-
qubit state is provided by the sum of the (bi-partite) entanglement measures associated with
the 2N−1 − 1 possible bi-partitions of the N-qubits system [14]. These entanglement measures
are given, essentially, by the degree of mixedness of the marginal density matrices associated
with each bi-partition. These degrees of mixedness can be, in turn, evaluated in several ways.
For instance, we can use the von Neumann entropy, the linear entropy, or a Renyi entropy
of index q. In what follows we are going to consider the following ways of computing the
degrees of mixedness of the marginal density matrices ρi .

• The linear entropy SL = 1 − Tr
[
ρ2

i

]
.

• The von Neumann entropy SV N = −Tr[ρi log2 ρi].
• The Renyi entropy with q → ∞, S

q→∞
Re = − ln λmax

k , where λk are the eigenvalues of
the marginal density matrix. This particular instance of the Renyi entropy constitutes
the case (within the Renyi family) that differs the most from the von Neumann entropy
[28, 29].

Besides these measures we are also going to consider the ‘negativity’ as a measure of the
amount of entanglement associated with a given bi-partition. The negativity is given by

Neg. =
∑

|αi |, (3)

where αi are the negative eigenvalues of the partial transpose matrix associated with a given
bi-partition. The global, multipartite entanglement measures associated with the sum (over
all bi-partitions) of each of these four quantities are here going to be denoted, respectively, by
EL,EV N,ER and EN .

Upper bounds for the four entanglement measures EL,EV N,ER and EN can be established
by considering an (hypothetical) N-qubits pure state such that all its marginal density matrices
are fully mixed. These bounds can be seen in table 1. Note, however, that these bounds may
not be reachable. For instance, there is no 4-qubit state reaching the alluded bound [15].

3. Distribution of multiqubit entanglement

In this section, we determine numerically the distribution of entanglement values
corresponding to pure states of multiqubit systems randomly generated according to the
Haar measure. In figures 1–3 we plot (for systems of three–five qubits respectively) the
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Figure 1. Entanglement distributions for 3-qubit states. All depicted quantities are dimensionless.

probability densities P of finding multiqubit states with given values of the entanglement
measures EL,EV N,ER and EN . In these figures, we also show vertical lines corresponding
to the entanglement values of important particular states, such as the N-qubit GHZ state,

|GHZ〉 = 1√
2
(|0 · · · 0〉 + |1 · · · 1〉), (4)

the states of high entanglement BSSB4 and BSSB5 (of four and five qubits, respectively)
discovered numerically by Brown et al [14], and the 4-qubit state HS, that has been conjectured
to maximize the entanglement of 4-qubit states [15] (when measuring entanglement using the
sum of the marginal von Neumann entropies associated with all bi-partitions). The HS state
has recently been shown to constitute a local maximum of the EV N entanglement measure for
4-qubit states [16].

A particularly interesting aspect of figures 1–3 is the status (as far as the present multiqubit
entanglement measures are concerned) of the state GHZ with respect to the bulk of the states
of the multiqubit system.

For 3-qubit systems, the |GHZ〉 state has all its single-qubit marginal density matrices
complete mixed and, consequently, constitutes the state of maximum entanglement according
to the measures EV N,EL,EN and ER . On the other hand, the state

|W 〉 = 1√
3
(|100〉 + |010〉 + |001〉), (5)

according to those same measures, exhibits considerably less entanglement than |GHZ〉.
However, as can clearly be appreciated in figure 1, the W state is still within the most
entangled 3-qubit pure states. The W state is clearly more entangled than the ‘typical’ pure
state of three qubits.
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Figure 2. Entanglement distributions for 4-qubit states. All depicted quantities are dimensionless.

We have seen that, in the case of three qubits, the four measures EV N,EL,EN and ER

lead to qualitatively similar conclusions in connection with the entanglement of the states
GHZ and W as compared with the entanglement exhibited by typical (pure) states. In contrast,
when 4-qubit states are considered, each of the aforementioned entanglement measures yields
different results. According to ER , the state |GHZ〉 still has an amount of entanglement well
above most pure states. According to EL, the state |GHZ〉 has an entanglement a little above
typical. According to EV N, |GHZ〉 can be said to be (in terms of its entanglement value) still
‘within the bulk of pure states’, but with an amount of entanglement clearly below typical.
Finally, according to EN , the |GHZ〉 state exhibits less entanglement than most pure states of
four qubits. It is also interesting to note that the state HS exhibits more entanglement than
BSSB4 when using the measures EL,EV N or EN . In contrast, BSSB4 has a larger value of
ER than HS.

For 5-qubit states, the |GHZ〉 state has less entanglement than most pure states when the
entanglement is measured using EL,EV N or EN . Curiously enough, according to ER the
|GHZ〉 still ranks as a 5-qubit state of rather large entanglement.

4. Search for multiqubit states of high entanglement

4.1. Searching algorithm

In the present paper, we are going to restrict our search of multiqubit states of high entanglement
to pure states. In this respect our approach is a little different from that of Brown et al [14],
who considered a search process within the complete space of possible states (that is, with
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Figure 3. Entanglement distributions for 5-qubit states. All depicted quantities are dimensionless.

any degree of mixedness). The kind of search studied by Brown et al is certainly of interest
and may shed some light on the structure of the ‘entanglement landscape’ of the full state
space. However, it is reasonable to expect the states of maximum entanglement to be pure.
Consequently, as far as the search of states of maximum entanglement is concerned, it seems
that limiting the search to pure states is not going to reduce its efficiency. The results reported
here fully confirm this expectation.

A general pure state of an N-qubit system can be represented as

|�〉 =
2N∑
k=1

(ak + ibk)|k〉, (6)

where |k〉, (k = 1, . . . , 2N) represents the states of the computational basis (that is, the 2N

states |00, . . . , 0〉, |10, . . . , 0〉, . . . , |11, . . . , 1〉). We start our search process with the initial
state |000 · · · 0〉. In other words, the initial parameters characterizing the state are a1 = 1,
and all the rest of the ai’s and bi’s are equal to zero. This initial state is fully factorizable and
can thus be regarded as being ‘very distant’ from states of high entanglement. Starting with
an arbitrary, random initial pure state does not alter the results of the search process. Now, at
each step of the search process a new, tentative state is generated according to the following
procedure. A random quantity � (uniformly chosen from an interval (−�max,�max)) is added
to each ai and bi (a different, independent � is generated for each parameter). The new state
generated in this way is then normalized to 1 and its entanglement measure is computed. If
the entanglement of the new state is larger than the entanglement of the previous state the
new state is kept, replacing the previous one. Otherwise, the new state is rejected and a new,
tentative state is generated. In order to ensure the convergence of this algorithm to a state of
high entanglement, the following two rules are also implemented.
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Table 2. Numerically obtained maximum values for the entanglement measures EL, EV N , ER

and EN .

Three qubits Four qubits Five qubits Six qubits Seven qubits

EL 1.500 000 4.000 00 10.000 000 23.000 000 49.573 765
EV N 3.000 000 9.377 34 25.000 000 66.000 000 152.620 140
ER 2.079 441 5.995 47 17.328 678 45.747 705 91.651 820
EN 1.500 000 6.098 07 17.500 000 60.500 000 155.812 856

• If 500 consecutive tentative new states are rejected, the interval for the random quantity �

is changed according to �max → �max
2 (as the initial value for �max we take �init

max = 0.1).
• When a value �max � 1 × 10−8 is reached the search program halts.

4.2. Results yielded by the searching algorithm

The maximum entanglement values obtained from the searching algorithm are listed in
table 2. It must be stressed that the maximum values associated with different measures
do not necessarily correspond to the same state. The states obtained when maximizing
one particular measure do not exhibit, in general, a maximum value of the other measures.
The results obtained by us after running the search algorithm several times (considering the
entanglement measures EL,EV N,ER and EN ) can be summarized as follows.

• Among the four measures considered here, EL is computationally the easiest and quickest
to evaluate. The algorithm runs faster when maximizing this measure than when
maximizing any of the other three. However, in the case of four qubits most states
that maximize EL do not maximize the other measures. There are many different 4-
qubit states that exhibit the observed maximum value EL = 4. Few of these states also
exhibit the maximum value of the other entanglement measures (for instance, the value
EV N = 9.377 34).

• The measure EV N is computationally more expensive than EL. The states obtained
maximizing EV N also maximize EL and EN . In other words, all the states that we have
found that realize the observed maximum value of EV N realize as well the observed
maxima of EL and EN . In contrast, for four qubits there are many states exhibiting the
observed maximum value of EL that do not reach the observed maximum value of EV N .

• The measure ER seems to be the ‘worst’ of the four. States that maximize ER do not,
in general, maximize the other measures. And, conversely, states maximizing any of the
other measures do not in general maximize ER .

• EN is, by far, computationally the most expensive of the measures considered here. The
states maximizing this measure also maximize EL and EV N . In this case, the situation is
similar to the already-mentioned one corresponding to the measure EV N .

The numerical values reported in the above table are the result of several search
experiments that can be summarized as follows. In the case of three qubits, the numerical
optimization of any of the aforementioned measures leads to the same state, the |GHZ〉 state,
and to the concomitant maxima of the entanglement measures. For four qubits, the search for
states optimizing EV N yields a final state (equivalent to the |HS〉 state) that also maximizes all
the entanglement measures considered excepting ER (here, by ‘equivalent to the |HS〉 state’
we mean that all the marginal density matrices of the alluded state exhibit the same entropic
values as those exhibited by the corresponding marginal density matrices of |HS〉, and also that
the alluded state has, for all bipartitions, the same negativities as |HS〉). The maximum value
of ER reported in table 2 is generated by search experiments maximizing this entanglement
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measure. The explicit expression of the corresponding 4-qubit state is given in table 3 (see
appendix). The 4-qubit state obtained when searching for the maximum value of EN is
equivalent to that obtained when maximizing EV N . When conducting search experiments for
4-qubit states maximizing EL we obtain, in most cases, states that do not reach the observed
maxima of the rest of the measures. These states are not, in general, equivalent to each other.
In point of fact, a different state is obtained in each run of the algorithm optimizing EL.

The 5-qubit case is similar to the 3-qubit one. The numerical search of 5-qubit states
optimizing any of the aforementioned entanglement measures leads to states that exhibit the
observed maxima of all these measures (which are reported in table 2). In other words, if
one runs a search algorithm based upon any one of these measures, one obtains a state that
exhibits all the maximum entanglement values reported in table 2. These values are those
corresponding to the 5-qubit state (8).

For six qubits, the search experiments based on the maximization of either EL or EV N

lead to final states exhibiting the same values of the four entanglement measures, which are
reported in table 2. The search algorithm based upon the optimization of ER yields states
with lower values of the four measures than those shown in table 2. For six qubits, the search
algorithm corresponding to EN is too slow and we were not able to reach the optimal state.

Finally, in the case of seven qubits the values reported on table 2 were evaluated on the
state found when numerically optimizing EV N (this state is explicitly given in table 4, see
appendix). When running numerical searches for 7-qubit states optimizing other measures
we did not find states with entanglement values higher than those evaluated upon the state
obtained when optimizing EV N .

Let us now discuss in more detail the numerically found states of high entanglement.

4.2.1. Four qubits. In the case of 4-qubit systems, the extremalization processes based upon
either of the measures EV N or EN always lead to states having the same entanglement values
as those exhibited by the HS state discovered by Higuchi and Sudbery [15], which is given by

|HS〉 = 1√
6
[|1100〉 + |0011〉 + ω(|1001〉 + |0110〉) + ω2(|1010〉 + |0101〉)], (7)

with ω = − 1
2 +

√
3

2 i. We repeated the search process starting under different, random initial
conditions and always found states with entanglement values corresponding to the HS state.
This constitutes convincing numerical evidence that the HS state is, at least, a local maximum
of both the EV N and the EN measures. In fact, it was recently proven by Brierley and Higuchi
that the HS state is indeed a local maximum for EV N [16]. Higuchi and Sudbery [15] have
provided analytical arguments supporting the conjecture that the HS state is also a global
maximum for EV N , but this conjecture has not been proven yet. These authors have also
proved that there is no pure state of four qubits such that all its 2-qubit marginal density
matrices are completely mixed [15]. It is interesting that Brown et al [14], when performing
a search process similar (but not identical) to that considered here, obtained instead of the HS
state always a state (which we here call BSSB4) exhibiting values of EV N and EN smaller than
those exhibited by HS. Besides some intrinsic differences in the algorithm itself, there is the
fact that the main results reported here were computed starting the search process with a pure
state, while Brown et al started their search with a mixed state. It is also worthwhile mentioning
that we performed the searches using a FORTRAN program, while Brown et al employed
a MATLAB program. When running a search algorithm maximizing the EL measure, we
obtained several different final states, some of them exhibiting values of EV N larger than the
value corresponding to the state BSSB4. All these findings suggest that, perhaps, the state
BSSB4 has no special significance (although it is certainly a highly entangled 4-qubit state).
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Its appearance when running the searching scheme developed by Brown et al seems to be just
an accident due to some special features of that algorithm.

We must mention that we also ran a search algorithm (written in the computer language
MATHEMATICA) similar to that of Brown et al (and different from that discussed in most
of the present paper), obtaining the same results as Brown et al did (that is, the algorithm
converged to a state with entanglement values corresponding to BSSB4). On the other hand,
when running an algorithm (written in MATHEMATICA) exhibiting the same basic structure
of our FORTRAN program we get the same results as those obtained with the FORTRAN code.
The main difference between our algorithm (either in the FORTRAN or the MATHEMATICA
versions) and that used by Brown et al (when particularized to pure states) is the following.
When generating new random trial states (in the ‘pure state version’ of Brown et al algorithm)
one chooses a random coefficient of the previous state, multiply the corresponding real and
imaginary parts by positive random numbers, and re-normalize the state. On the other hand, in
our algorithm (see subsection 4.1) we add random numbers (that may be positive or negative)
to the real and imaginary parts of the state’s coefficients (and then re-normalize the state).
The results of various numerical experiments done by us suggest that this difference on the
implementation of the searching algorithm accounts for the different results obtained for highly
entangled 4-qubit states.

4.2.2. Five qubits. When running our search scheme for states of five qubits, we always
obtain states exhibiting the same entanglement values as the state obtained by Brown et al
[14],

|BSSB5〉 = 1
2 [|100〉|�−〉 + |010〉|�−〉 + |100〉|�+〉 + |111〉|�+〉] (8)

where �± = |00〉±|11〉 and �± = |01〉±|10〉. This state has all its marginal density matrices
(for one and two qubits) completely mixed.

4.2.3. Six qubits. In the case of six qubits, our algorithm converges to highly entangled states
exhibiting all the marginal density matrices for states of one, two, three qubits completely
mixed. In particular, we discovered the new state of high entanglement,

�6qb = 1√
32

[|000 000〉 + |111 111〉 + |000 011〉 + |111 100〉 + |000 101〉 + |111 010〉
+ |000 110〉 + |111 001〉 + |001 001〉 + |110 110〉 + |001 111〉 + |110 000〉
+ |010 001〉 + |101 110〉 + |010 010〉 + |101 101〉 + |011 000〉 + |100 111〉
+ |011 101〉 + |100 010〉 − (|001 010〉 + |110 101〉 + |001 100〉 + |110 011〉
+ |010 100〉 + |101 011〉 + |010 111〉 + |101 000〉 + |011 011〉 + |100 100〉
+ |011 110〉 + |100 001〉)] (9)

which, to the best of our knowledge, has not yet been reported in the literature. This state has
a rather simple structure, with all its coefficients (when expanded in the computational basis)
equal to 0 or ±1 (the same situation occurs for maximally entangled states of two, three, four
and five qubits).

4.2.4. Seven qubits. When we ran the search program for 7-qubit states of high entanglement
we found states with the following features. They all have completely mixed single-qubit
marginal density matrices. However, these states do not exhibit completely mixed 2-qubit
and 3-qubit marginal density matrices (in this sense, the present situation seems to have some
similarities with the 4-qubit case).
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The high entanglement states of seven qubits that we found are characterized by 2-qubit
marginal density matrices exhibiting the following entropic values:

1 − Tr
(
ρ2

i

) = 0.744 511 1988 (10)

SV N(ρi) = 1.984 1042 (11)

S
q→∞
Re (ρi) = 1.248 122 309. (12)

The 3-qubit marginal density matrices of these 7-qubit states have

1 − Tr
(
ρ2

i

) = 0.862 090 188 86 (13)

SV N(ρi) = 2.937 397 88 (14)

S
q→∞
Re (ρi) = 1.471 265 9418. (15)

When running our program (maximizing either EV N or EN ) for 5-qubit or 6-qubit states,
the search process always leads to a state whose marginal density matrices of one, two and (in
the six-qubit case) three qubits are completely mixed. In contrast, this never happens when
running our algorithm for 7-qubit states. The marginal density matrices of 1-qubit subsystems
turn out to be maximally mixed, but not the marginal density matrices corresponding to
subsystems consisting of two or three qubits. Moreover, all the runs of the algorithm for
7-qubit states yielded states with the same entropic values for the marginal statistical operators.
This suggests that the case of seven qubits may have some similarities with the case of four
qubits. In other words, our results constitute numerical evidence supporting the following
conjecture.

Conjecture 1. There is no pure state of seven qubits whose marginal density matrices for
subsystems of one, two or three qubits are all completely mixed.

4.2.5. The single-qubit reduced states conjecture. It was conjectured by Brown et al [14] that
multiqubit states of maximum entanglement always have all their single-qubit marginal density
matrices completely mixed. The results obtained by us when running the search algorithm
maximizing the EV N and EN measures are consistent with the aforementioned conjecture. All
the states yielded by the searching algorithm (up to systems of seven qubits) have maximally
mixed single-qubit marginal density matrices. Moreover, in the case of five qubits all the
states obtained also exhibited maximally mixed 2-qubit marginal density matrices. In the case
of six qubits, all the states obtained had completely mixed marginal density matrices of one,
two and three qubits.

5. Conclusions

In the present effort, we have investigated some aspects of the entanglement properties of
multiqubit systems. We have considered global, multiqubit entanglement measures based upon
the idea of considering all the possible bi-partitions of the system. For each bi-partition we
computed a bi-partite entanglement measure (such as the von Neumann entropy of the marginal
density matrix associated with the subsystem with a Hilbert space of lower dimensionality) and
then summed the measures associated with all the bi-partitions. This approach has been widely
used in the recent literature. In order to evaluate the bi-partite contributions, we considered
four different quantities: the von Neumann, linear and Renyi (with q → ∞) entropies and the
negativity. Consequently, we have considered four entanglement measures.
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We determined numerically, for the aforementioned four measures, the distributions of
entanglement values in the Hilbert spaces of pure states of three, four and five qubits. This
allowed us to determine, for instance, the entanglement status of special states (such us the
|GHZ〉 state) with respect to the bulk of the state space.

We also determined, for systems of four, five, six and seven qubits, states of high
entanglement using a search scheme akin, but not identical to, the one recently advanced
by Brown et al [14]. These authors performed the search process using an entanglement
measure based on the negativity. We investigated the behavior of the search processes based
on four different measures: the negativity, and the von Neumann, linear, and Renyi (with
q → ∞) entropies of the marginal density matrices associated with a bi-partition. The
results obtained by us have some interesting features when compared with those reported by
Brown et al [14]. First of all, we found that a search algorithm based on the von Neumann
entropy is as successful as that based upon negativity. However, the von Neumann entropy
is (in general) considerably less expensive to compute than the negativity. Consequently,
when initializing the search process with a pure state, it is better to use the von Neumann
entropy.

In the case of states of four qubits, Brown et al reported that their search algorithm
always converged (up to local unitary transformations) to a state (here called the BSSB4 state)
exhibiting less entanglement than the HS state. In contrast, our algorithm always converged
to states exhibiting the same entanglement measures as those characterizing the HS state. Our
results thus provide further support to the conjecture advanced by Higuchi and Sudbery [15]
that the HS state corresponds to a global entanglement maximum for 4-qubit states. Another
interesting finding, going beyond the results of Brown et al is a particular state of six qubits
(discovered using our search algorithm) that has all its marginal density matrices of one, two
and three qubits completely mixed. It is interesting that (in the computational basis) all the
coefficients characterizing this state are (up to a global normalization constant) equal to 0 or
±1.

Finally, on the basis of the numerical evidence obtained by us when running our search
algorithm for highly entangled states of seven qubits, we make the conjecture that there is no
pure state of seven qubits whose marginal density matrices for subsystems of one, two or three
qubits are all completely mixed.
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Appendix A

In this appendix, we present the explicit expressions for some of the states that we have
introduced in the previous sections. To give the expression of a state |�〉 we list the values
of the coefficients Ci appearing in the expansion |�〉 = ∑

Ci |i〉 of the alluded state in the
computational basis {|i〉}.
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Table 3. Coefficients for the 4-qubit state maximizing the entanglement measure based on the
Renyi entropy. This state does not maximize any other entanglement measure.

i Ci

0 (0.337 140 676 904 686, 0.174 693 405 076 796)
1 (3.860 442 882 346 969 × 10−002, 6.837 682 483 380 016 × 10−002)
2 (5.962 390 590 615 981 × 10−002, 0.130 590 439 038 055)
3 (3.780 903 708 091 862 × 10−002, 0.283 134 470 502 957)
4 (0.128 308 013 031 141, 0.160 044 519 815 334)
5 (−4.976 588 113 149 925 × 10−002, −0.156 794 899 004 251)
6 (0.150 158 286 657 780, −0.269 632 673 631 216)
7 (−0.284 880 375 838 561, 4.364 132 887 880 368 × 10−002)
8 (−0.291 078 649 973 983, −0.122 251 701 129 522)
9 (8.597 952 221 078 008 × 10−002, −0.132 269 103 402 589)

10 (−0.184 679 774 192 993, −3.521 179 357 675 151 × 10−002)
11 (−7.859 668 707 973 404 × 10−002, 0.285 246 180 204 626)
12 (−3.120 148 147 808 102 × 10−002, 3.966 923 168 894 761 × 10−002)
13 (−0.352 475 250 278 756, −0.170 787 520 712 258)
14 (2.666 941 273 479 068 × 10−002, −0.244 143 026 082 971)
15 (0.176 830 325 000 684, −7.078 443 862 056 820 × 10−002)

Table 4. Coefficients for the 7-qubit state maximizing the von Neumann entropy based
entanglement measure. It also maximizes the rest of the entanglement measures used in this
paper.

i Ci

0 (1.992 268 895 612 789 × 10−002, −2.048 153 299 374 923 × 10−002)
1 (5.733 894 334 752 334 × 10−002, 4.973 994 982 020 743 × 10−003)
2 (−4.620 635 677 624 599 × 10−002, 9.889 188 153 518 157 × 10−002)
3 (0.114 773 068 934 711, 7.803 541 807 299 509 × 10−002)
4 (9.358 057 357 464 943 × 10−003, 8.773 453 313 011 471 × 10−002)
5 (−4.517 771 306 482 277 × 10−002, 7.317 172 187 520 525 × 10−002)
6 (7.148 596 275 123 295 × 10−002, −6.486 415 242 189 469 × 10−002)
7 (8.095 549 161 110 917 × 10−002, 6.281 081 599 967 211 × 10−002)
8 (−0.110 934 833 126 726, −6.540 485 101 339 541 × 10−002)
9 (4.243 711 009 834 195 × 10−002, 0.111 608 997 849 607)

10 (−5.324 057 236 738 998 × 10−002, −1.064 133 868 681 598 × 10−002)
11 (−3.199 776 618 312 627 × 10−002, 1.480 812 105 331 856 × 10−002)
12 (−3.484 102 446 829 535 × 10−002, 6.505 443 761 669 717 × 10−002)
13 (6.659 331 311 799 828 × 10−002, 2.520 078 454 850 319 × 10−002)
14 (2.127 875 261 481 843 × 10−002, −8.620 489 194 999 095 × 10−003)
15 (3.763 178 050 938 378 × 10−002, −3.257 033 322 657 695 × 10−002)
16 (−9.639 113 945 809 372 × 10−002, −8.706 895 542 690 339 × 10−002)
17 (7.213 494 811 044 056 × 10−002, 1.637 328 607 897 790 × 10−002)
18 (3.347 204 156 200 859 × 10−003, −4.540 542 385 699 349 × 10−002)
19 (5.235 538 552 827 945 × 10−002, −5.539 353 156 272 388 × 10−002)
20 (−5.734 329 608 600 269 × 10−002, −3.334 326 701 130 044 × 10−002)
21 (−2.042 578 560 682 204 × 10−002, −0.106 743 556 238 253)
22 (−5.987 692 237 756 689 × 10−002, −5.035 304 599 306 584 × 10−002)
23 (3.304 680 530 465 200 × 10−002, 9.449 073 856 519 782 × 10−002)
24 (2.843 182 057 391 498 × 10−002, −2.453 794 986 457 519 × 10−002)
25 (−1.316 539 219 004 622 × 10−002, −4.912 228 258 199 161 × 10−002)



Multiqubit systems: highly entangled states and entanglement distribution 13419

Table 4. (Continued.)

i Ci

26 (−5.889 102 546 322 750 × 10−002, 7.627 608 399 874 446 × 10−002)
27 (−9.712 149 518 138 669 × 10−002, 1.793 695 100 255 052 × 10−002)
28 (0.101 272 862 135 273, 3.940 173 722 756 957 × 10−002)
29 (8.351 246 119 258 422 × 10−002, −8.055 956 525 511 754 × 10−002)
30 (3.447 514 504 354 676 × 10−002, −6.113 180 059 952 469 × 10−002)
31 (9.951 265 147 314 473 × 10−002, 5.575 638 197 924 940 × 10−002)
32 (−8.560 101 157 107 276 × 10−002, 4.371 001 847 647 850 × 10−002)
33 (1.790 860 687 993 339 × 10−002, −4.609 380 726 768 647 × 10−002)
34 (0.101 094 129 379 701, 6.494 214 772 295 025 × 10−002)
35 (−2.247 063 699 015 752 × 10−002, 4.864 367 215 816 477 × 10−003)
36 (−0.101 021 865 482 900, −3.782 742 816 016 475 × 10−002)
37 (3.152 510 928 837 363 × 10−002, 0.122 475 737 293 311)
38 (3.278 246 037 718 845 × 10−002, −1.256 558 150 969 285E-004)
39 (−5.736 492 004 809 834 × 10−002, 6.977 684 817 377 462 × 10−002)
40 (2.216 141 448 231 444 × 10−002, −7.601 939 988 222 593 × 10−002)
41 (0.131 970 698 296 467, −1.260 154 440 769 711 × 10−002)
42 (8.044 458 687 238 869 × 10−003, −9.387 152 676 075 274 × 10−002)
43 (−7.808 462 265 554 876 × 10−003, −1.202 931 445 781 517 × 10−002)
44 (−3.274 238 472 614 039 × 10−002, −2.514 421 762 607 319 × 10−002)
45 (−7.505 399 199 689 463 × 10−003, −3.929 813 385 495 669 × 10−002)
46 (0.155 137 227 199 514, 1.049 705 149 755 480 × 10−002)
47 (3.965 712 582 027 887 × 10−002, 1.083 231 718 050 668 × 10−002)
48 (−8.224 544 805 028 827 × 10−002, −3.383 505 686 446 630 × 10−002)
49 (−0.154 734 489 832 632, 8.673 238 144 109 774 × 10−002)
50 (−7.332 128 812 157 200 × 10−002, −1.371 022 464 291 685 × 10−002)
51 (5.208 789 441 301 026 × 10−003, −1.411 983 814 527 247 × 10−002)
52 (−3.590 001 918 998 145 × 10−002, 4.647 625 796 299 270 × 10−002)
53 (−8.697 459 750 434 891E-004, 1.482 515 294 565 435 × 10−002)
54 (1.092 140 821 864 845 × 10−002, 4.129 654 472 949 966 × 10−002)
55 (7.674 494 499 478 537 × 10−002, −5.338 559 685 445 066 × 10−002)
56 (−6.251 229 029 986 881 × 10−002, 6.425 293 853 541 948 × 10−002)
57 (8.520 457 184 967 269 × 10−003, −7.709 553 490 818 186 × 10−003)
58 (−3.438 221 523 644 015 × 10−002, −9.255 954 127 990 704 × 10−002)
59 (−2.577 383 579 159 245 × 10−002, 0.129 459 058 820 970)
60 (0.108 622 543 447 635, −8.806 418 991 079 722 × 10−002)
61 (−8.106 072 511 646 092 × 10−003, 3.606 461 883 196 400 × 10−002)
62 (−1.202 677 529 398 651 × 10−002, 3.058 305 163 904 075 × 10−002)
63 (−2.485 595 158 034 444 × 10−002, 9.667 248 785 955 586 × 10−002)
64 (6.171 068 243 552 971 × 10−002, −9.583 626 876 325 756 × 10−003)
65 (8.806 183 494 115 266 × 10−002, −3.526 345 160 182 855 × 10−002)
66 (6.854 736 532 168 551 × 10−002, −6.411 781 011 736 128 × 10−002)
67 (2.066 804 256 769 957 × 10−002, 1.612 535 204 191 288 × 10−002)
68 (1.438 805 006 820 953 × 10−002, 0.124 162 489 557 811)
69 (−5.074 891 074 532 802 × 10−002, −5.439 956 049 423 335 × 10−002)
70 (−3.640 086 957 084 941 × 10−002, 4.594 300 372 342 439 × 10−003)
71 (3.550 293 356 508 465 × 10−002, 8.695 740 710 560 376 × 10−002)
72 (−4.773 739 666 022 134 × 10−002, −3.667 942 618 866 395 × 10−002)
73 (2.346 579 563 123 868 × 10−003, -0.119 908 858 816 339)
74 (1.493 075 601 025 749 × 10−002, 4.553 124 163 243 615 × 10−002)
75 (5.034 836 527 591 473 × 10−002, 8.124 581 001 062 543 × 10−002)
76 (6.802 270 653 015 219 × 10−002, 8.317 313 465 161 994 × 10−003)
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Table 4. (Continued.)

i Ci

77 (6.283 616 184 316 396 × 10−002, 6.514 992 784 328 244E-004)
78 (0.127 829 889 515 795, 0.118 971 821 010 114)
79 (−9.788 293 784 579 458 × 10−002, 5.354 297 473 450 592 × 10−003)
80 (0.117 110 474 490 768, −4.317 232 032 001 831 × 10−002)
81 (−9.256 055 710 305 476 × 10−002, −2.768 362 340 687 266 × 10−002)
82 (−7.244 569 839 572 039 × 10−002, 6.671 389 393 930 190 × 10−002)
83 (−5.515 716 658 607 148 × 10−002, 2.093 262 220 899 585 × 10−002)
84 (−3.028 765 985 082 235 × 10−002, 4.529 684 133 342 195 × 10−002)
85 (−1.454 140 943 294 647 × 10−002, 7.974 409 510 449 305 × 10−002)
86 (−7.121 856 602 606 923 × 10−002, −4.438 866 940 874 264 × 10−002)
87 (−3.590 040 749 082 390 × 10−002, 8.143 026 671 780 049 × 10−002)
88 (8.912 049 927 583 944 × 10−003, −1.389 907 243 324 935 × 10−002)
89 (9.484 845 129 641 119 × 10−002, −5.878 664 094 021 236 × 10−002)
90 (−5.450 397 076 610 332 × 10−002, 0.117 961 375 334 513)
91 (−1.169 436 871 304 801 × 10−002, −6.947 913 611 647 639 × 10−002)
92 (−6.798 510 500 616 832 × 10−002, −7.747 559 839 783 932 × 10−002)
93 (1.740 724 913 960 769 × 10−002, −1.809 038 449 399 666 × 10−002)
94 (−1.885 142 661 877 520 × 10−002, 6.314 493 850 061 739 × 10−002)
95 (7.520 470 652 239 290 × 10−002, 4.456 457 191 590 223 × 10−002)
96 (0.117 132 792 695 098, 3.066 328 283 226 673 × 10−002)
97 (1.127 320 363 030 642 × 10−002, −2.083 667 932 069 934 × 10−002)
98 (1.977 443 152 287 268 × 10−002, 4.839 368 466 995 119 × 10−002)
99 (−0.146 648 569 587 175, −1.841 910 055 111 614 × 10−002)
100 (2.485 199 104 080 963 × 10−002, −9.065 577 146 599 127 × 10−002)
101 (−1.352 964 224 869 225 × 10−002, −8.518 961 930 320 970 × 10−002)
102 (4.288 496 230 633 006 × 10−002, 7.033 803 797 783 106 × 10−003)
103 (4.876 461 334 642 698 × 10−002, −1.428 437 645 902 438 × 10−002)
104 (−3.244 529 712 612 734 × 10−002, 8.121 540 837 139 055 × 10−002)
105 (2.809 280 188 171 577 × 10−002, 4.286 033 253 289 921 × 10−002)
106 (5.009 488 734 831 499 × 10−002, −6.852 953 802 160 539 × 10−002)
107 (−4.883 631 054 660 045 × 10−002, 6.372 960 434 850 038 × 10−002)
108 (−1.583 821 551 197 247 × 10−002, −4.855 360 397 290 493 × 10−002)
109 (3.537 174 285 397 322 × 10−002, 0.104 311 697 071 161)
110 (4.234 833 191 138 120 × 10−002, 1.152 575 018 630 899 × 10−002)
111 (0.149 915 848 699 035, 2.063 573 734 200 513 × 10−003)
112 (−2.681 850 738 901 102 × 10−003, −2.650 438 998 719 609 × 10−002)
113 (2.099 859 642 637 032 × 10−002, 7.483 425 704 168 839 × 10−002)
114 (−2.307 627 608 049 840 × 10−002, 8.294 414 552 141 494 × 10−003)
115 (−7.879 700 573 926 614 × 10−002, −5.952 656 546 473 500 × 10−002)
116 (3.702 914 401 846 596 × 10−002, 5.284 665 497 817 300 × 10−003)
117 (−4.628 839 981 989 381 × 10−002, 7.345 123 474 109 293 × 10−002)
118 (0.107 904 736 635 145, -0.164 393 350 587 244)
119 (4.763 528 675 022 823 × 10−002, 1.908 136 182 097 281 × 10−002)
120 (0.116 908 223 755 807, −4.314 878 373 454 251 × 10−002)
121 (3.495 914 043 033 557 × 10−002, −4.526 014 514 286 658 × 10−002)
122 (6.120 391 755 562 234 × 10−002, −3.887 547 264 821 206 × 10−002)
123 (3.457 915 304 142 278 × 10−002, −7.568 701 576 399 368 × 10−002)
124 (6.046 688 922 765 979 × 10−002, −3.864 792 846 188 141 × 10−002)
125 (−3.215 267 435 226 381 × 10−002, 0.128 788 000 228 012)
126 (−1.191 016 945 303 225 × 10−002, 3.655 884 472 429 104 × 10−003)
127 (−2.612 694 626 117 723E-005, −5.303 000 737 423 087 × 10−002)
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